Skip to main content

Lab2: create sum , divide , subtract , multiplied , remainder in java

lab2_teedculculator:

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package lab2_teedculculator;
/**
 *
 * @author HOANG LIHUO
 */
import java.util.Scanner;
public class Lab2_TeedCulculator {
    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        // TODO code application logic here
        double a , b , sum , divide , subtract , multiplied , remainder;
  
        Scanner input = new Scanner(System.in);
        System.out.print("a = ");
                 a = input.nextDouble();
        System.out.print("b = "); 
                 b = input.nextDouble();
      // 3. Do the following Operations     
           // a. Sum A + B
          
                sum = a + b;
        System.out.println("a. A + B =" +sum);//out sum
       
           // b. Divide A / B
          
                divide = a / b;
        System.out.println("b. A / B =" +divide);//out divide
       
           // c. Subtract A - B
          
                subtract = a - b;
        System.out.println("c. A - B =" +subtract);//out subtract
       
           // d. Multiplied A*B
          
                multiplied= a * b;
        System.out.println("d. A * B =" +multiplied);//out multiplied
       
           // e. Remainder A % B
          
                remainder = a % b;
        System.out.println("e. A % B =" +remainder);//out remainder
    }
   
}

Comments

Popular posts from this blog

The laws of set algebra & Laws derivable >> in the table 5.1 & 5.2 :

Ans :       Commutative laws                             Ans:          Associative laws Ans:         Distributive laws       Ans:            Identity laws Ans:         Complement laws Ans:          Absorption laws Ans:         Minimization laws Ans:         De Morgan’s laws

Matrix algebra

                 Matrices provide a means of storing large quantities of information in such a way that each piece can be easily identified and manipulated. They permit the solution of large systems of linear equations to be carried out in a logical and formal way so that computer implementation follows naturally. Applications of matrices extend over many areas of engineering including electrical network analysis and robotics. 1-BASIC DEFINITIONS                  Matrix is a rectangular pattern or array of numbers.      For example:                    are all matrices. Note that we usually use a capital letter to denote a matrix, and enclose the array of numbers in brackets. To describe the size of a matrix we quote its number of rows and columns in that order so, for example, an r × s matrix has r rows and s colu...

Discrete mathematics

            It's about Discrete mathematics in this book  #Anthony Croft, Engineering Mathematices, 5e (2017)  So i will choose exercise 5.2 #7 #8 #9  to slow everyone: 7 . The sets A, B and C are given by A = {1, 3, 5, 7, 9}, B = {0, 2, 4, 6} and C = {1, 5, 9} and the universal set, E = {0,1, 2, . . . ,9}. (a) Represent the sets on a Venn diagram. (b) State A ∪ B. (c) State B ∩ C. (d) State E ∩ C. (e) State not A. (f) State not B ∩not C. (g) State not (B ∪C). Ans :  a ) Represent the sets on a Venn diagram : The set containing all the numbers of interest is called the universal set, E. E is represented by the rectangular region. Sets A , B and C are represented  by the interiors of the circles and it is evident that 1 ,   3,  5,  7 and 9 are members of A while 0, 2,  4,  and 6 are members of B that 1,  5  and  9 are members of C....