Skip to main content

Exercise Chapter 4: Coordinate systems Book Engineering Mathematics A Foundation for Electronic, Electrical, Communications and Systems Engineers.

Exercise 4.2  (page 157)


1. Plot the following points: A(2,−2), B(−2, 1),
C(−1, 0), D(0,−2).
2. State the coordinates of the points U, V and W .
3. A point P lies on the x axis. State the y coordinate of P.

4. A point Q lies on the y axis. State the x coordinate of Q.

Ans:

 1. We have points: A(2, -2) , B(-2, 1) , C(-1, 0) , D(0, -2)


 2. State the coordinates of the points :

     U(−2,−2), V(4, 1), W(3,−1)

 3. A point P lies on the x axis. State the y coordinate of P.

      P(0, 0)
 4. A point Q lies on the y axis. State the x coordinate of Q.

      Q(0, 0)




Exercise 4.3  (page 158)

1. Plot the points A(2, 0,−1), B(1,−1, 1) and
C(−1, 1, 2).
2. State the equation of the plane passing through
(4, 7,−1), (3, 0,−1) and (1, 2,−1).

3. State the equation of the plane passing through

(3, 1, 7), (−1, 1, 0) and (6, 1,−3).

Ans:

1.We have 3 points:
        A(2, 0,−1) , B(1,−1, 1) , C(−1, 1, 2)

2.State the equation of the plane passing through
(4, 7,−1), (3, 0,−1) and (1, 2,−1).


In the graph lie in the plane z = -1. All points in this plane have a z coordinate of -1.

3. State the equation of the plane passing through
(3, 1, 7), (−1, 1, 0) and (6, 1,−3).








In the graph lie in the plane y = 1. All points in this plane have a y coordinate of 1.

Exercise 4.4  (page 163)















Ans:

1 .Given the polar coordinates, calculate the Cartesian coordinates of each point.



2. Given the Cartesian coordinates, calculate the polar
coordinates of each point.



Exercise 4.5  (page 165)










Ans:
1.



2. 



Exercise 4.6  (page 170)


Ans:

1.Express the following Cartesian coordinates as cylindrical polar coordinates.

2. Express the following cylindrical polar coordinates as
Cartesian coordinates.



3. Describe the surface defined by
   a) z = 0
     z in the space
     x and y in the plane

   b) z = -1
      a plane parallel to the x--y plane and 1 unit below it

  c) r = 2, z = 1
      a circle, radius 2, parallel to the x--y plane and with center at 
(0, 0, 1)




Exercise 4.7  (page 173)

Ans:





Technical Computing Exercises 4.7




REVIEW EXERCISES 4



Ans:





















































Comments

Popular posts from this blog

The laws of set algebra & Laws derivable >> in the table 5.1 & 5.2 :

Ans :       Commutative laws                             Ans:          Associative laws Ans:         Distributive laws       Ans:            Identity laws Ans:         Complement laws Ans:          Absorption laws Ans:         Minimization laws Ans:         De Morgan’s laws

Exercise Chapter7 : Vectors

VECTORS AND SCALARS: BASIC CONCEPTS Exercise 7.2 Solution : 1. For the arbitrary points A, B, C, D and E, and a single  vector which is equivalent to A:   DC + CB    = DB B:  CE + DC   = DE 2.  shows a cube. Let p =  AB, q =  AD and  r =  AE . Express the vectors representing  BD,  AC and  AG in terms of p, q and r. Consider the triangle ABD shown in Figure. We note that  BD represents the third  side of the triangle formed when AD are placed head to tail. Using the triangle law we find :                      AB + BD = AD               => BD = AD - AB                             = q - p Consider the triangle  ADC  shown in Figure. We note that  AD  represe...

Matrix algebra

                 Matrices provide a means of storing large quantities of information in such a way that each piece can be easily identified and manipulated. They permit the solution of large systems of linear equations to be carried out in a logical and formal way so that computer implementation follows naturally. Applications of matrices extend over many areas of engineering including electrical network analysis and robotics. 1-BASIC DEFINITIONS                  Matrix is a rectangular pattern or array of numbers.      For example:                    are all matrices. Note that we usually use a capital letter to denote a matrix, and enclose the array of numbers in brackets. To describe the size of a matrix we quote its number of rows and columns in that order so, for example, an r × s matrix has r rows and s colu...